
actsnclass

Jul 31, 2023

Contents

1 Active Learning for Supernova Photometric Classification 1
1.1 Getting started . 1
1.2 Analysis steps . 3
1.3 Table of Contents . 4
1.4 Indices and tables . 42

Index 45

i

ii

CHAPTER 1

Active Learning for Supernova Photometric Classification

This tool allows you to reproduce the results presented in Ishida et al., 2019. It was based on the original prototype
developed during the COIN Residence Program #4 , which took place in Clermont Ferrand, France, August 2017.

The code has been updated to allow a friendly use and expansion.

1.1 Getting started

In order to setup a suitable working environment, clone this repository and make sure you have the necessary packages
installed.

1.1.1 Dependencies

actsnclass was developed under Python3. The complete list of dependencies is given below:

• Python>=3.7

• matplotlib>=3.1.1

• numpy>=1.17.0

• pandas>=0.25.0

• setuptools>=41.0.1

• scipy>=1.3.0

• sklearn>=0.20.3

• seaborn>=0.9.0

1.1.2 Installing

Clone this repository,

1

https://cosmostatistics-initiative.org/portfolio-item/active-learning-for-sn-classification/
http://iaacoin.wixsite.com/crp2017/

actsnclass

>>> git clone https://github.com/COINtoolbox/ActSNClass

We recommend the use of Anaconda environments to ensure the proper version of all dependencies are installed and
do not interfere in your other applications. You can find instructions on how to install it here.

If you wish to use this option, simple navigate to the directory of the repository and do:

>>> conda env create -f environment.yml

Once the environment is set up you can activate it:

>>> conda activate ActSNClass

If everything goes well you will see the name of the environment in the left most side of your command line.

You can now install actsnclass with:

(ActSNClass) >> python setup.py install

1.1.3 Setting up a working directory

In another location of your choosing, create the following directory structure:

work_dir
plots
results

The outputs of actsnclass will be stored in these directories.

In order to set things properly, from the repository you just cloned, and move the data directory to your chosen working
directory and unpack the data.

>>> mv -f actsnclass/data/ work_dir/
>>> cd work_dir/data
>>> tar -xzvf SIMGEN_PUBLIC_DES.tar.gz

This data was provided by Rick Kessler, after the publication of results from the SuperNova Photometric Classification
Challenge.

2 Chapter 1. Active Learning for Supernova Photometric Classification

https://docs.anaconda.com/anaconda/install/
https://arxiv.org/abs/1008.1024
https://arxiv.org/abs/1008.1024

actsnclass

1.2 Analysis steps

The actsnclass pipeline is composed of 4 important steps:

1. Feature extraction

2. Classifier

3. Query Strategy

4. Metric evaluation

These are arranged in the adaptable learning process (figure to the right).

1.2.1 Using this package

Step 1 is considered pre-processing. The current code does the feature extraction using the Bazin parametric function
for the complete training and test sample before any machine learning application is used.

Details of the tools available to evaluate different steps on feature extraction can be found in the Feature extraction
page.

Alternatively, you can also perform the full light curve fit for the entire sample from the command line:

>>> fit_dataset.py -dd <path_to_data_dir> -o <output_file>

Once the data has been processed you can apply the full Active Learning loop according to your needs. A detail
description on how to use this tool is provided in the Learning Loop page.

The command line option require a few more inputs than the feature extraction stage, but it is also available:

>>> run_loop.py -i <input features file> -b <batch size> -n <number of loops>
>>> -d <output metrics file> -q <output queried sample file>
>>> -s <learning strategy> -t <choice of initial training>

We also provide detail explanation on how to use this package to produce other stages of the pipeline like: prepare the
Canonical sample, prepare data for time domain and produce plots.

We also provide detail descriptions on how to contribute with other modules in the How to contribute tab.

Enjoy!!

1.2. Analysis steps 3

https://arxiv.org/abs/0904.1066

actsnclass

Acknowledgements

This work is heavily based on the first prototype developed during COIN Residence Program (CRP#4), held in Cler-
mont Ferrand, France, 2017 and financially supported by Universite Clermont Auvergne and La Region Auvergne-
Rhone-Alpes. We thank Emmanuel Gangler for encouraging the realization of this event.

The COsmostatistics INitiative (COIN) receives financial support from CNRS as part of its MOMENTUM programme
over the 2018-2020 period, under the project Active Learning for Large Scale Sky Surveys.

This work would not be possible without intensive consultation to online platforms and discussion forums. Although
it is not possible to provide a complete list of the open source material consulted in the construction of this material,
we recognize their importance and deeply thank all those who contributes to open learning platforms.

1.3 Table of Contents

1.3.1 Feature Extraction

The first stage in consists in transforming the raw data into a uniform data matrix which will subsequently be given as
input to the learning algorithm.

The current implementation of actsnclass text-like data from the SuperNova Photometric Classification Challenge
(SNPCC) which is described in Kessler et al., 2010.

Processing 1 Light curve

The raw data looks like this:

SURVEY: DES
SNID: 848233
IAUC: UNKNOWN
PHOTOMETRY_VERSION: DES
SNTYPE: 22
FILTERS: griz
RA: 36.750000 deg
DECL: -4.500000 deg
MAGTYPE: LOG10
MAGREF: AB
FAKE: 2 (=> simulated LC with snlc_sim.exe)
MWEBV: 0.0283 MW E(B-V)
REDSHIFT_HELIO: 0.50369 +- 0.00500 (Helio, z_best)
REDSHIFT_FINAL: 0.50369 +- 0.00500 (CMB)
REDSHIFT_SPEC: 0.50369 +- 0.00500
REDSHIFT_STATUS: OK

HOST_GALAXY_GALID: 17173
HOST_GALAXY_PHOTO-Z: 0.4873 +- 0.0318

SIM_MODEL: NONIA 10 (name index)
SIM_NON1a: 30 (non1a index)
SIM_COMMENT: SN Type = II , MODEL = SDSS-017564
SIM_LIBID: 2
SIM_REDSHIFT: 0.5029

(continues on next page)

4 Chapter 1. Active Learning for Supernova Photometric Classification

https://iaacoin.wixsite.com/crp2017
https://en.uca.fr/english-version/
https://www.auvergnerhonealpes.fr/
https://www.auvergnerhonealpes.fr/
https://cosmostatistics-initiative.org
http://www.cnrs.fr/
https://arxiv.org/abs/1008.1024

actsnclass

(continued from previous page)

SIM_HOSTLIB_TRUEZ: 0.5000 (actual Z of hostlib)
SIM_HOSTLIB_GALID: 17173
SIM_DLMU: 42.276020 mag [-5*log10(10pc/dL)]
SIM_RA: 36.750000 deg
SIM_DECL: -4.500000 deg
SIM_MWEBV: 0.0256 (MilkyWay E(B-V))
SIM_PEAKMAG: 22.48 22.87 22.70 22.82 (griz obs)
SIM_EXPOSURE: 1.0 1.0 1.0 1.0 (griz obs)
SIM_PEAKMJD: 56251.609375 days
SIM_SALT2x0: 1.229e-17
SIM_MAGDIM: 0.000
SIM_SEARCHEFF_MASK: 3 (bits 1,2=> found by software,humans)
SIM_SEARCHEFF: 1.0000 (spectro-search efficiency (ignores pipelines))
SIM_TRESTMIN: -38.24 days
SIM_TRESTMAX: 64.80 days
SIM_RISETIME_SHIFT: 0.0 days
SIM_FALLTIME_SHIFT: 0.0 days

SEARCH_PEAKMJD: 56250.734

==
TERSE LIGHT CURVE OUTPUT:
#
NOBS: 108
NVAR: 9
VARLIST: MJD FLT FIELD FLUXCAL FLUXCALERR SNR MAG MAGERR SIM_MAG
OBS: 56194.145 g NULL 7.600e+00 4.680e+00 1.62 99.000 5.000 98.926
OBS: 56194.156 r NULL 3.875e+00 2.752e+00 1.41 99.000 5.000 98.953
OBS: 56194.172 i NULL 3.585e+00 4.628e+00 0.77 99.000 5.000 99.033
OBS: 56194.188 z NULL -2.203e+00 4.463e+00 -0.49 99.000 5.000 98.983
OBS: 56207.188 g NULL -7.008e+00 4.367e+00 -1.60 99.000 5.000 98.926
OBS: 56207.195 r NULL -1.189e+00 3.459e+00 -0.34 99.000 5.000 98.953
OBS: 56207.203 i NULL 8.799e+00 6.249e+00 1.41 99.000 5.000 99.033

You can load this data using:

1 >>> from actsnclass.fit_lightcurves import LightCurve
2

3 >>> path_to_lc = 'data/SIMGEN_PUBLIC_DES/DES_SN848233.DAT'
4

5 >>> lc = LightCurve() # create light curve instance
6 >>> lc.load_snpcc_lc(path_to_lc) # read data
7 >>> lc.photometry # check structure of photometry
8 mjd band flux fluxerr SNR
9 0 56194.145 g 7.600 4.680 1.62

10 1 56194.156 r 3.875 2.752 1.41
11
12 106 56348.008 z 70.690 6.706 10.54
13 107 56348.996 g 26.000 5.581 4.66
14 [108 rows x 5 columns]

Once the data is loaded, you can fit each individual filter to the parametric function proposed by Bazin et al., 2009 in
one specific filter.

1 >>> rband_features = lc.fit_bazin('r')

(continues on next page)

1.3. Table of Contents 5

https://arxiv.org/abs/0904.1066

actsnclass

(continued from previous page)

2 >>> print(rband_features)
3 [159.25796385, -13.39398527, 55.16210333, 111.81204143, -20.13492354]

The designation for each parameter are stored in:

It is possible to perform the fit in all filters at once and visualize the result using:

1 >>> lc.fit_bazin_all() # perform Bazin fit in all filters
2 >>> lc.plot_bazin_fit(save=True, show=True,
3 output_file='plots/SN' + str(lc.id) + '.png') # save to file

Processing all light curves in the data set

There are 2 way to perform the Bazin fits for the entire SNPCC data set. Using a python interpreter,

1 >>> from actsnclass import fit_snpcc_bazin
2

3 >>> path_to_data_dir = 'data/SIMGEN_PUBLIC_DES/' # raw data directory
4 >>> output_file = 'results/Bazin.dat' # output file
5 >>> fit_snpcc_bazin(path_to_data_dir=path_to_data_dir, features_file=output_file)

The above will produce a file called Bazin.dat in the results directory.

6 Chapter 1. Active Learning for Supernova Photometric Classification

actsnclass

The same result can be achieved using the command line:

>> fit_dataset.py -dd <path_to_data_dir> -o <output_file>

1.3.2 Building the Canonical sample

According to the nomenclature used in Ishida et al., 2019, the Canonical sample is a subset of the test sample chosen to
hold the same characteristics of the training sample. It was used to mimic the effect of continuously adding elements
to the training sample under the traditional strategy.

It was constructed using the following steps:

1. From the raw light curve files, build a metadata matrix containing: [snid, sample, sntype, z,
g_pkmag, r_pkmag, i_pkmag, z_pkmag, g_SNR, r_SNR, i_SNR, z_SNR] where z corre-
sponds to redshift, x_pkmag is the simulated peak magnitude and x_SNR denotes the mean SNR, both in
filter x;

2. Separate original training and test set in 3 subsets according to SN type: [Ia, Ibc, II];

3. For each object in the training sample, find its nearest neighbor within objects of the test sample of the same SN
type and considering the photometric parameter space built in step 1.

This will allow you to construct a Canonical sample holding the same characteristics and size of the original training
sample but composed of different objects.

actsnclass allows you to perform this task using the py:mod:actsnclass.build_snpcc_canonical module:

1 >>> from snactclass import build_snpcc_canonical
2

3 >>> # define variables
4 >>> data_dir = 'data/SIMGEN_PUBLIC_DES/'
5 >>> output_sample_file = 'results/Bazin_SNPCC_canonical.dat'
6 >>> output_metadata_file = 'results/Bazin_metadata.dat'
7 >>> features_file = 'results/Bazin.dat'
8

9 >>> sample = build_snpcc_canonical(path_to_raw_data: data_dir, path_to_
→˓features=features_file,

10 >>> output_canonical_file=output_sample_file,
11 >>> output_info_file=output_metadata_file,
12 >>> compute=True, save=True)

Once the samples is constructed you can compare the distribution in [z, g_pkmag, r_pkmag] with a plot:

1 >>> from actsnclass import plot_snpcc_train_canonical
2

3 >>> plot_snpcc_train_canonical(sample, output_plot_file='plots/compare_canonical_
→˓train.png')

1.3. Table of Contents 7

https://arxiv.org/pdf/1804.03765.pdf

actsnclass

In the command line, using the same parameters as in the code above, you can do all at once:

>>> build_canonical.py -c <if True compute metadata>
>>> -d <path to raw data dir>
>>> -f <input features file> -m <output file for metadata>
>>> -o <output file for canonical sample> -p <comparison plot file>
>>> -s <if True save metadata to file>

You can check that the file results/Bazin_SNPCC_canonical.dat is very similar to the original features
file. The only difference is that now a few of the sample variables are set to queryable:

id redshift type code sample gA gB gt0 gtfall gtrise rA rB rt0 rtfall rtrise iA iB
→˓it0 itfall itrise zA zB zt0 ztfall ztrise
116537 0.5547 II 36 test 10.969309008063526 -2.505571025776927 33.36879338510094 89.
→˓92091344407919 -1.4070121479476083 35.57261257957346 -0.97172916012906 47.
→˓691951316763436 37.48483229249487 -7.146619117223875 41.16723042762342 0.
→˓14005823764049471 47.983238664813264 39.02626334489017 -6.096248676680143 36.
→˓82968789062783 -0.373638211418927 48.438610651533445 41.8848763303308 -7.
→˓169183522127793
855370 0.5421 Ibc 23 test -5.514648646328689 3.370545820694393 6.890703579070343 127.
→˓00223553079377 -0.04721760599586505 27.987087830949765 -0.4446376337515848 51.
→˓06299616763716 13.46475077451422 -0.7802021055103384 42.50390337399486 1.
→˓217778587283846 63.88727539461748 4.425762504064253 -2.826164280709543 57.
→˓08358377564619 -0.9866672975549484 65.3976378960504 2.88096954432307 -2.
→˓211749860376304
328118 0.3131 II 37 test 28.134338786167365 0.7147372066065217 45.830405214215425 15.
→˓850284787778433 -0.0005766632993162762 29.225476277548275 -1.9734118280637896 45.
→˓83230493446332 87.25700882127312 -0.00025821702716214264 24.95217257542528 -0.
→˓3731568724509137 40.527255841246365 311.42509172517947 -3.099534332677601 46.
→˓782672798921226 -0.05678675661798624 53.51739930097104 50.76716462668245 -4.
→˓572685479766832
704481 0.4665 Ia 0 queryable -50.86850174812521 2.4148469184147547 16.05240678384717
→˓3.5459318666713298 -0.4734666030325012 74.65602268994473 -3.763616485144308 48.
→˓208444944828855 24.3318092539982 -4.452287612782472 83.29745588526693 -7.
→˓371877954771961 50.92270461365078 38.76468635410394 -10.931632426569717 73.
→˓35112115534632 -1.2509966370291774 40.053959252846106 44.453394158157614 -0.
→˓18674652754319326
43679 0.5756 II 33 test 28.24271470397688 -3.438072722932048 23.521675700587007 32.
→˓4401288159836 -0.2295765027048151 -37.86668398190429 6.8580060036559365 22.
→˓252525376185087 2.3940753934318044 -1.611409074593934 -20.420915833911547 9.
→˓2659565057976 7.0218302478113035 23.713442135755557 -0.027609543521757457 14.
→˓76124690750807 -5.175821286895905 32.58560788340983 115.86494837233313 -0.
→˓2587648450330448 (continues on next page)

8 Chapter 1. Active Learning for Supernova Photometric Classification

actsnclass

(continued from previous page)

172648 0.7592 II 31 test -5.942021205498 2.5808480681448858 72.24216865162195 83.
→˓43696533883242 -0.04052830859563986 17.05919635984848 1.005755998955811 18.
→˓148318002391164 33.16119808959254 -0.12803412647871454 12.153694246253906 -1.
→˓2962293252577974 17.493068792921502 89.98548146319197 -0.14950758787782462 13.
→˓355316206445695 -2.4143982246591293 23.84002028961246 118.87985827861259 -1.
→˓4858837093947788
762146 0.7245 Ibc 22 test 10.734014319410377 -0.696725251384634 92.36623187978644 0.
→˓5112285753252996 -0.4900012400030447 12.968161724599275 -0.94670057528261 55.
→˓7516252880299 25.59410571631452 -1.971658945324412 19.03779421586546 -2.
→˓228264147418322 57.66412361316971 35.09222360219662 -3.325944814741228 22.
→˓877393161444374 0.3070939958786501 57.9675613727551 49.63155574417528 -1.
→˓8832424871891025

This means that you can use the actsnclass.learn_loop module in combination with a RandomSampling
strategy but reading data from the canonical sample. In this way, at each iteration the code will select a random object
from the test sample but a query will only be made is the selected object belongs to the canonical sample.

In the command line, this looks like:

>>> run_loop.py -i results/Bazin_SNPCC_canonical.dat -b <batch size> -n <number of
→˓loops>
>>> -d <output metrics file> -q <output queried sample file>
>>> -s RandomSampling -t <choice of initial training>

1.3.3 Prepare data for time domain

In order to mimic the realistic situation where only a limited number of observed epochs is available at each day, it is
necessary to prepare our simulate data resemble this scenario. In actsnclass this is done in 5 steps:

1. Determine minimum and maximum MJD for the entire SNPCC sample;

2. For each day of the survey, run through the entire data sample and select only the observed epochs which were
obtained prior to it;

3. Perform the feature extraction process considering only the photometric points which survived item 2.

4. Check if in the MJD in question the object is available for querying.

5. Join all information in a standard features file.

You can perform the entire analysis for one day of the survey using the actsnclass.time_domain module:

1 >>> from actsnclass.time_domain import SNPCCPhotometry
2

3 >>> path_to_data = 'data/SIMGEN_PUBLIC_DES/'
4 >>> output_dir = 'results/time_domain/'
5 >>> day = 20
6

7 >>> data = SNPCCPhotometry()
8 >>> data.create_daily_file(output_dir=output_dir, day=day)
9 >>> data.build_one_epoch(raw_data_dir=path_to_data, day_of_survey=day,

10 time_domain_dir=output_dir)

Alternatively you can use the command line to prepare a sequence of days in one batch:

>>> build_time_domain.py -d 20 21 22 23 -p <path to raw data dir> -o <path to output
→˓time domain dir>

1.3. Table of Contents 9

actsnclass

1.3.4 Active Learning loop

Details on running 1 loop

Once the data has been pre-processed, analysis steps 2-4 can be performed directly using the DataBase object.

For start, we can load the feature information:

1 >>> from actsnclass import DataBase
2

3 >>> path_to_features_file = 'results/Bazin.dat'
4

5 >>> data = DataBase()
6 >>> data.load_features(path_to_features_file, method='Bazin')
7 Loaded 21284 samples!

Notice that this data has some pre-determine separation between training and test sample:

1 >>> data.metadata['sample'].unique()
2 array(['test', 'train'], dtype=object)

You can choose to start your first iteration of the active learning loop from the original training sample flagged int he
file OR from scratch. As this is our first example, let’s do the simple thing and start from the original training sample.
The code below build the respective samples and performs the classification:

1 >>> data.build_samples(initial_training='original', nclass=2)
2 Training set size: 1093
3 Test set size: 20191
4

5 >>> data.classify(method='RandomForest')
6 >>> data.classprob # check classification probabilities
7 array([[0.461, 0.539],
8 [0.346, 0.654],
9 ...,

10 [0.398, 0.602],
11 [0.396, 0.604]])

Hint: If you wish to start from scratch, just set the initial_training=N where N is the number of objects in you want in
the initial training. The code will then randomly select N objects from the entire sample as the initial training sample.
It will also impose that at least half of them are SNe Ias.

For a binary classification, the output from the classifier for each object (line) is presented as a pair of floats, the first
column corresponding to the probability of the given object being a Ia and the second column its complement.

Given the output from the classifier we can calculate the metric(s) of choice:

1 >>> data.evaluate_classification(metric_label='snpcc')
2 >>> print(data.metrics_list_names) # check metric header
3 ['acc', 'eff', 'pur', 'fom']
4

5 >>> print(data.metrics_list_values) # check metric values
6 [0.5975434599574068, 0.9024767801857585,
7 0.34684684684684686, 0.13572404702012383]

and save results for this one loop to file:

10 Chapter 1. Active Learning for Supernova Photometric Classification

actsnclass

1 >>> path_to_features_file = 'results/Bazin.dat'
2 >>> metrics_file = 'results/metrics.dat'
3 >>> queried_sample_file = 'results/queried_sample.dat'
4

5 >>> data.save_metrics(loop=0, output_metrics_file=metrics_file)
6 >>> data.save_queried_sample(loop=0, queried_sample_file=query_file,
7 >>> full_sample=False)

You should now have in your results directory a metrics.dat file which looks like this:

day accuracy efficiency purity fom query_id
0 0.4560942994403447 0.5545490350531705 0.23933367329593744 0.05263972502898026 81661

Running a number of iterations in sequence

We provide a function where all the above steps can be done in sequence for a number of iterations. In interactive
mode, you must define the required variables and use the actsnclass.learn_loop function:

1 >>> from actsnclass.learn_loop import learn_loop
2

3 >>> nloops = 1000 # number of iterations
4 >>> method = 'Bazin' # only option in v1.0
5 >>> ml = 'RandomForest' # only option in v1.0
6 >>> strategy = 'RandomSampling' # learning strategy
7 >>> input_file = 'results/Bazin.dat' # input features file
8 >>> metric = 'results/metrics.dat' # output metrics file
9 >>> queried = 'results/queried.dat' # output query file

10 >>> train = 'original' # initial training
11 >>> batch = 1 # size of batch
12

13 >>> learn_loop(nloops=nloops, features_method=method, classifier=ml,
14 >>> strategy=strategy, path_to_features=input_file, output_metrics_

→˓file=metrics,
15 >>> output_queried_file=queried, training=train, batch=batch)

Alternatively you can also run everything from the command line:

>>> run_loop.py -i <input features file> -b <batch size> -n <number of loops>
>>> -d <output metrics file> -q <output queried sample file>
>>> -s <learning strategy> -t <choice of initial training>

The queryable sample

In the example shown above, when reading the data from the features file there was only 2 possibilities for the sample
variable:

1 >>> data.metadata['sample'].unique()
2 array(['test', 'train'], dtype=object)

This corresponds to an unrealistic scenario where we are able to obtain spectra for any object at any time.

Hint: If you wish to restrict the sample available for querying, just change the sample variable to queryable for
the objects available for querying. Whenever this keywork is encountered in a file of extracted features, the code

1.3. Table of Contents 11

actsnclass

automatically restricts the query selection to the objects flagged as queryable.

1.3.5 Active Learning loop in time domain

Considering that you have previously prepared the time domain data, you can run the active learning loop in its current
form either by using the actsnclass.time_domain_loop or by using the command line interface:

>>> run_time_domain.py -d <first day of survey> <last day of survey>
>>> -m <output metrics file> -q <output queried file> -f <features directory>
>>> -s <learning strategy> -t <choice of initial training>

Make sure you check the full documentation of the module to understand which variables are required depending on
the case you wish to run.

For example, to run with SNPCC data, the larges survey interval you can run is between 20 and 182 days, the corre-
sponding option will be -d 20 182.

In the example above, if you choose to start from the original training sample, -t original you must also input the path
to the file containing the full light curve analysis - so the full initial training can be read. This option corresponds to -t
original -fl <path to full lc features>.

More details can be found in the corresponding docstring.

Once you ran one or more options, you can use the actsnclass.plot_results module, as described in the
produce plots page. The result will be something like the plot below (accounting for variations due to initial training).

12 Chapter 1. Active Learning for Supernova Photometric Classification

https://github.com/COINtoolbox/ActSNClass/blob/master/actsnclass/scripts/run_time_domain.py

actsnclass

Warning: At this point there is no Canonical sample option implemented for the time domain module.

1.3.6 Plotting

Once you have the metrics results for a set of learning strategies you can plot the behaviour the evolution of the metrics:

• Accuracy: fraction of correct classifications;

• Efficiency: fraction of total SN Ia correctly classified;

• Purity: fraction of correct Ia classifications;

• Figure of merit: efficiency x purity with a penalty factor of 3 for false positives (contamination).

The class Canvas <https://actsnclass.readthedocs.io/en/latest/api/actsnclass.Canvas.html#actsnclass.Canvas>_ en-
ables you do to it using:

1 >>> from actsnclass.plot_results import Canvas
2

3 >>> # define parameters
4 >>> path_to_files = ['results/metrics_canonical.dat',
5 >>> 'results/metrics_random.dat',
6 >>> 'results/metrics_unc.dat']
7 >>> strategies_list = ['Canonical', 'RandomSampling', 'UncSampling']
8 >>> output_plot = 'plots/metrics.png'
9

10 >>> #Initiate the Canvas object, read and plot the results for
11 >>> # each metric and strategy.
12 >>> cv = Canvas()
13 >>> cv.load_metrics(path_to_files=path_to_files,
14 >>> strategies_list=strategies_list)
15 >>> cv.set_plot_dimensions()
16 >>> cv.plot_metrics(output_plot_file=output_plot,
17 >>> strategies_list=strategies_list)

This will generate:

1.3. Table of Contents 13

actsnclass

Alternatively, you can use it directly from the command line.

For example, the result above could also be obtained doing:

>>> make_metrics_plots.py -m <path to canonical metrics> <path to rand sampling
→˓metrics> <path to unc sampling metrics>
>>> -o <path to output plot file> -s Canonical RandomSampling UncSampling

OBS: the color pallete for this project was chosen to honor the work of Piet Mondrian.

1.3.7 How to contribute

Below you will find general guidance on how to prepare your piece of code to be integrated to the actsnclass
environment.

Add a new data set

The main challenge of adding a new data set is to build the infrastructure necessary to handle the new data.

The function below show how the basic structure required to deal with 1 light curve:

1 >>> import pandas as pd
2

3 >>> def load_one_lightcurve(path_to_data, *args):
4 >>> """Load 1 light curve at a time.

(continues on next page)

14 Chapter 1. Active Learning for Supernova Photometric Classification

https://en.wikipedia.org/wiki/Piet_Mondrian

actsnclass

(continued from previous page)

5 >>>
6 >>> Parameters
7 >>> ----------
8 >>> path_to_data: str
9 >>> Complete path to data file.

10 >>> ...
11 >>> ...
12 >>>
13 >>> Returns
14 >>> -------
15 >>> pd.DataFrame
16 >>> """
17 >>>
18 >>> ####################
19 >>> # Do something #####
20 >>> ####################
21 >>>
22 >>> # structure of light curve
23 >>> lc = {}
24 >>> lc['dataset_name'] = XXXX # name of the data set
25 >>> lc['filters'] = [X, Y, Z] # list of filters
26 >>> lc['id'] = XXX # identification number
27 >>> lc['redshift'] = X # redshift (optional, important for

→˓building canonical)
28 >>> lc['sample'] = XXXXX # train, test or queryable (none is

→˓mandatory)
29 >>> lc['sntype'] = X # Ia or non-Ia
30 >>> lc['photometry' = pd.DataFrame() # min keys: MJD, filter, FLUX, FLUXERR
31 >>> # bonus: MAG, MAGERR, SNR
32 >>> return lc

Feel free to also provide other keywords which might be important to handle your data. Given a function like this we
should be capable of incorporating it into the pipeline.

Please refer to the actsnclass.fit_lightcurves module for a closer look at this part of the code.

Add a new feature extraction method

Currently actsnclass only deals with Bazin features. The snipet below show an example of friendly code for a
new feature extraction method.

1 >>> def new_feature_extraction_method(time, flux, *args):
2 >>> """Extract features from light curve.
3 >>>
4 >>> Parameters
5 >>> ----------
6 >>> time: 1D - np.array
7 >>> Time of observation.
8 >>> flux: 1D - np.array of floats
9 >>> Measured flux.

10 >>> ...
11 >>> ...
12 >>>
13 >>> Returns
14 >>> -------
15 >>> set of features

(continues on next page)

1.3. Table of Contents 15

actsnclass

(continued from previous page)

16 >>> """
17 >>>
18 >>> ################################
19 >>> ### Do something ##########
20 >>> ################################
21 >>>
22 >>> return features

You can check the current feature extraction tools for the Bazin parametrization at actsnclass.bazin module.

Add a new classifier

A new classifier should be warp in a function such as:

1 >>> def new_classifier(train_features, train_labels, test_features, *args):
2 >>> """Random Forest classifier.
3 >>>
4 >>> Parameters
5 >>> ----------
6 >>> train_features: np.array
7 >>> Training sample features.
8 >>> train_labels: np.array
9 >>> Training sample classes.

10 >>> test_features: np.array
11 >>> Test sample features.
12 >>> ...
13 >>> ...
14 >>>
15 >>> Returns
16 >>> -------
17 >>> predictions: np.array
18 >>> Predicted classes - 1 class per object.
19 >>> probabilities: np.array
20 >>> Classification probability for all objects, [pIa, pnon-Ia].
21 >>> """
22 >>>
23 >>> #######################################
24 >>> ####### Do something #############
25 >>> #######################################
26 >>>
27 >>> return predictions, probabilities

The only classifier implemented at this point is a Random Forest and can be found at the actsnclass.
classifiers module.

Important: Remember that in order to be effective in the active learning frame work a classifier should not be heavy
on the required computational resources and must be sensitive to small changes in the training sample. Otherwise the
evolution will be difficult to tackle.

Add a new query strategy

A query strategy is a protocol which evaluates the current state of the machine learning model and makes an informed
decision about which objects should be included in the training sample.

16 Chapter 1. Active Learning for Supernova Photometric Classification

actsnclass

This is very general, and the function can receive as input any information regarding the physical properties of the test
and/or target samples and current classification results.

A minimum structure for such function would be:

1 >>> def new_query_strategy(class_prob, test_ids, queryable_ids, batch, *args):
2 >>> """New query strategy.
3 >>>
4 >>> Parameters
5 >>> ----------
6 >>> class_prob: np.array
7 >>> Classification probability. One value per class per object.
8 >>> test_ids: np.array
9 >>> Set of ids for objects in the test sample.

10 >>> queryable_ids: np.array
11 >>> Set of ids for objects available for querying.
12 >>> batch: int
13 >>> Number of objects to be chosen in each batch query.
14 >>> ...
15 >>> ...
16 >>>
17 >>> Returns
18 >>> -------
19 >>> query_indx: list
20 >>> List of indexes identifying the objects from the test sample
21 >>> to be queried in decreasing order of importance.
22 >>> """
23 >>>
24 >>> ##
25 >>> ##### Do something ##########
26 >>> ##
27 >>>
28 >>> return list of indexes of size batch

The current available strategies are Passive Learning (or Random Sampling) and Uncertainty Sampling. Both can be
scrutinized at the :py:mod:actsnclass.‘query_strategies‘ module.

Add a new diagnostic metric

Beyond the criteria for choosing an object to be queried one could also think about the possibility to test different
metrics to evaluate the performance of the classifier at each learning loop.

A new diagnostic metrics can then be provided in the form:

1 >>> def new_metric(label_pred: list, label_true: list, ia_flag, *args):
2 >>> """Calculate efficiency.
3 >>>
4 >>> Parameters
5 >>> ----------
6 >>> label_pred: list
7 >>> Predicted labels
8 >>> label_true: list
9 >>> True labels

10 >>> ia_flag: number, symbol
11 >>> Flag used to identify Ia objects.
12 >>> ...
13 >>> ...

(continues on next page)

1.3. Table of Contents 17

actsnclass

(continued from previous page)

14 >>>
15 >>> Returns
16 >>> -------
17 >>> a number or set of numbers
18 >>> Tells us how good the fit was.
19 >>> """
20 >>>
21 >>> ###
22 >>> ##### Do something ! ##################
23 >>> ###
24 >>>
25 >>> return a number or set of numbers

The currently implemented diagnostic metrics are those used in the SNPCC (Kessler et al., 2009) and can be found at
the actsnclass.metrics module.

1.3.8 Reference / API

Pre-processing

Light curve analysis

Performing feature extraction for 1 light curve

LightCurve() Light Curve object, holding meta and photometric data.
LightCurve.load_snpcc_lc(path_to_data) Reads one LC from SNPCC data.
LightCurve.fit_bazin(band) Extract Bazin features for one filter.
LightCurve.fit_bazin_all() Perform Bazin fit for all filters independently and con-

catenate results.
LightCurve.plot_bazin_fit([save, show, . . .]) Plot data and Bazin fitted function.

actsnclass.LightCurve

class actsnclass.LightCurve
Light Curve object, holding meta and photometric data.

Variables

• bazin_features_names (list) – List of names of the Bazin function parameters.

• bazin_features (list) – List with the 5 best-fit Bazin parameters in all filters. Con-
catenated from blue to red.

• dataset_name (str) – Name of the survey or data set being analyzed.

• filters (list) – List of broad band filters.

• id (int) – SN identification number

• photometry (pd.DataFrame) – Photometry information. Keys –> [mjd, band, flux,
fluxerr, SNR, MAG, MAGERR].

• redshift (float) – Redshift

• sample (str) – Original sample to which this light curve is assigned

18 Chapter 1. Active Learning for Supernova Photometric Classification

https://arxiv.org/abs/1008.1024

actsnclass

• sim_peakmag (np.array) – Simulated peak magnitude in each filter

• sncode (int) – Number identifying the SN model used in the simulation

• sntype (str) – General classification, possibilities are: Ia, II or Ibc

check_queryable(mjd: float, r_lim: float)
Check if this light can be queried in a given day.

load_snpcc_lc(path_to_data: str)
Reads header and photometric information for 1 light curve

fit_bazin(band: str)→ list
Calculates best-fit parameters from the Bazin function in 1 filter

fit_bazin_all()
Calculates best-fit parameters from the Bazin func for all filters

plot_bazin_fit(save: bool, show: bool, output_file: srt)
Plot photometric points and Bazin fitted curve

Examples

>>> from actsnclass import LightCurve

define path to light curve file

>>> path_to_lc = 'data/SIMGEN_PUBLIC_DES/DES_SN431546.DAT'

>>> lc = LightCurve() # create light curve instance
>>> lc.load_snpcc_lc(path_to_lc) # read data
>>> lc.photometry # display photometry

mjd band flux fluxerr SNR
0 56207.188 g 9.6560 4.369 2.21
1 56207.195 r 6.3370 3.461 1.83
...
96 56336.043 r 14.4300 3.098 4.66
97 56336.055 i 18.9500 5.029 3.77
[98 rows x 5 columns]

>>> lc.fit_bazin_all() # perform Bazin fit in all filters
>>> lc.bazin_features # display Bazin parameters
[62.0677260096896, -7.959383808822104, 47.37511467606875, 37.4919069623379,
...
206.65806244385922, -4.777010246622081]

plot light curve fit

>>> lc.plot_bazin_fit(output_file=str(lc.id) + '.png')

for fitting the entire sample. . .

>>> path_to_data_dir = 'data/SIMGEN_PUBLIC_DES/' # raw data directory
>>> output_file = 'results/Bazin.dat' # output file
>>> fit_snpcc_bazin(path_to_data_dir=path_to_data_dir, features_file=output_file)

a file with all Bazin fits for this data set was produced

1.3. Table of Contents 19

actsnclass

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__() Initialize self.
check_queryable(mjd, r_lim) Check if this light can be queried in a given day.
fit_bazin(band) Extract Bazin features for one filter.
fit_bazin_all() Perform Bazin fit for all filters independently and

concatenate results.
load_snpcc_lc(path_to_data) Reads one LC from SNPCC data.
plot_bazin_fit([save, show, output_file]) Plot data and Bazin fitted function.

actsnclass.LightCurve.load_snpcc_lc

LightCurve.load_snpcc_lc(path_to_data: str)
Reads one LC from SNPCC data.

Populates the attributes: dataset_name, id, sample, redshift, sncode, sntype, photometry and sim_peakmag.

Parameters path_to_data (str) – Path to text file with data from a single SN.

actsnclass.LightCurve.fit_bazin

LightCurve.fit_bazin(band: str)
Extract Bazin features for one filter.

Parameters band (str) – Choice of broad band filter

Returns bazin_param – Best fit parameters for the Bazin function: [a, b, t0, tfall, trise]

Return type list

actsnclass.LightCurve.fit_bazin_all

LightCurve.fit_bazin_all()
Perform Bazin fit for all filters independently and concatenate results.

Populates the attributes: bazin_features.

actsnclass.LightCurve.plot_bazin_fit

LightCurve.plot_bazin_fit(save=True, show=False, output_file=’ ’)
Plot data and Bazin fitted function.

Parameters

• save (bool (optional)) – Save figure to file. Default is True.

• show (bool (optinal)) – Display plot in windown. Default is False.

• output_file (str) – Name of file to store the plot.

20 Chapter 1. Active Learning for Supernova Photometric Classification

actsnclass

Fitting an entire data set

fit_snpcc_bazin(path_to_data_dir, features_file) Fit Bazin functions to all filters in training and test sam-
ples.

actsnclass.fit_snpcc_bazin

actsnclass.fit_snpcc_bazin(path_to_data_dir: str, features_file: str)
Fit Bazin functions to all filters in training and test samples.

Parameters

• path_to_data_dir (str) – Path to directory containing the set of individual files, one for each
light curve.

• features_file (str) – Path to output file where results should be stored.

Basic light curve analysis tools

bazin.bazin(time, a, b, t0, tfall, trise) Parametric light curve function proposed by Bazin et al.,
2009.

bazin.errfunc(params, time, flux) Absolute difference between theoretical and measured
flux.

bazin.fit_scipy(time, flux) Find best-fit parameters using scipy.least_squares.

actsnclass.bazin.bazin

actsnclass.bazin.bazin(time, a, b, t0, tfall, trise)
Parametric light curve function proposed by Bazin et al., 2009.

Parameters

• time (np.array) – exploratory variable (time of observation)

• a (float) – Normalization parameter

• b (float) – Shift parameter

• t0 (float) – Time of maximum

• tfall (float) – Characteristic decline time

• trise (float) – Characteristic raise time

Returns response variable (flux)

Return type array_like

actsnclass.bazin.errfunc

actsnclass.bazin.errfunc(params, time, flux)
Absolute difference between theoretical and measured flux.

Parameters

• params (list of float) – light curve parameters: (a, b, t0, tfall, trise)

• time (array_like) – exploratory variable (time of observation)

1.3. Table of Contents 21

actsnclass

• flux (array_like) – response variable (measured flux)

Returns diff – absolute difference between theoretical and observed flux

Return type float

actsnclass.bazin.fit_scipy

actsnclass.bazin.fit_scipy(time, flux)
Find best-fit parameters using scipy.least_squares.

Parameters

• time (array_like) – exploratory variable (time of observation)

• flux (array_like) – response variable (measured flux)

Returns output – best fit parameter values

Return type list of float

Canonical sample

The Canonical object for holding the entire sample.

Canonical() Canonical sample object.
Canonical.snpcc_get_canonical_info(. . . [,
. . .])

Load SNPCC metada data required to characterize ob-
jects.

Canonical.snpcc_identify_samples() Identify training and test sample.
Canonical.find_neighbors() Identify 1 nearest neighbor for each object in training.

actsnclass.Canonical

class actsnclass.Canonical
Canonical sample object.

Variables

• canonical_ids (list) – List of ids for objects in the canonical sample.

• canonical_sample (list) – Complete data matrix for the canonical sample.

• meta_data (pd.DataFrame) – Metadata on sim peakmag and SNR for all objects in
the original data set.

• test_ia_data (pd.DataFrame) – Metadata on sim peakmag and SNR for SN Ias in
the test sample.

• test_ia_id (np.array) – Set of ids for all SN Ia in the test sample.

• test_ibc_data (pd.DataFrame) – Metadata on sim peakmag and SNR for SN Ibcs
in the test sample.

• test_ibc_id (np.array) – Set of ids for all SN Ibc in the test sample.

• test_ii_data (pd.DataFrame) – Metadata on sim peakmag and SNR for SN IIs in
the test sample.

• test_ii_id (np.array) – Set of ids for all SN II in the test sample.

22 Chapter 1. Active Learning for Supernova Photometric Classification

actsnclass

• train_ia_data (pd.DataFrame) – Metadata on sim peakmag and SNR for SN Ias in
the train sample.

• train_ia_id (np.array) – Set of ids for all SN Ia in the train sample.

• train_ibc_data (pd.DataFrame) – Metadata on sim peakmag and SNR for SN Ibcs
in the train sample.

• train_ibc_id (np.array) – Set of ids for all SN Ibc in the train sample.

• train_ii_data (pd.DataFrame) – Metadata on sim peakmag and SNR for SN IIs in
the train sample.

• train_ii_id (np.array) – Set of ids for all SN II in the train sample.

snpcc_get_canonical_info(path_to_rawdata_dir: str, canonical_output_file: st, compute: bool,
save: bool, canonical_input_file: str)

Load SNPCC metada data required to characterize objects.

snpcc_identify_samples()
Identify training and test sample.

find_neighbors()
Identify 1 nearest neighbor for each object in training.

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__() Initialize self.
find_neighbors() Identify 1 nearest neighbor for each object in train-

ing.
snpcc_get_canonical_info(. . . [, compute,
. . .])

Load SNPCC metada data required to characterize
objects.

snpcc_identify_samples() Identify training and test sample.

actsnclass.Canonical.snpcc_get_canonical_info

Canonical.snpcc_get_canonical_info(path_to_rawdata_dir: str, canonical_output_file: str,
compute=True, save=True, canonical_input_file=”)

Load SNPCC metada data required to characterize objects.

Populates attribute: data.

Parameters

• path_to_rawdata_dir (str) – Complete path to directory holding raw data files.

• canonical_output_file (str) – Complete path to output canonical sample file.

• compute (bool (optional)) – Compute required metada from raw data files. Default is True.

• save (bool (optional)) – Save metadata to file. Default is True.

• canonical_input_file (str (optional)) – Path to input file if required metadata was previously
calculated. If name is give, ‘compute’ must be False.

1.3. Table of Contents 23

actsnclass

actsnclass.Canonical.snpcc_identify_samples

Canonical.snpcc_identify_samples()
Identify training and test sample.

Populates attributes: train_ia_data, train_ia_id, train_ibc_data, train_ibc_id, train_ii_data, train_ibc_id,
test_ia_data, test_ia_id, test_ibc_data, test_ibc_id, test_ii_data and test_ii_id.

actsnclass.Canonical.find_neighbors

Canonical.find_neighbors()
Identify 1 nearest neighbor for each object in training.

Populates attribute: canonical_ids.

Functions to populate the Canonical object

build_snpcc_canonical(path_to_raw_data, . . .) Build canonical sample for SNPCC data.
plot_snpcc_train_canonical(sample[, . . .]) Plot comparison between training and canonical sam-

ples.

actsnclass.build_snpcc_canonical

actsnclass.build_snpcc_canonical(path_to_raw_data: str, path_to_features: str, out-
put_canonical_file: str, output_info_file=”, compute=True,
save=True, input_info_file=”, features_method=’Bazin’)

Build canonical sample for SNPCC data.

Parameters

• path_to_raw_data (str) – Complete path to raw data directory.

• path_to_features (str) – Complete path to Bazin features files.

• output_canonical_file (str) – Complete path to output canonical sample file.

• output_info_file (str) – Complete path to output metadata file for canonical sample. This
includes SNR and simulated peak magnitude for each filter.

• compute (bool (optional)) – If True, compute metadata information on SNR and sim peak
mag. If False, read info from file. Default is True.

• save (bool (optional)) – Save simulation metadata information to file. Default is True.

• input_info_file (str (optional)) – Complete path to sim metadata file. This must be provided
if save == False.

• features_method (str (optional)) – Method for feature extraction. Only ‘Bazin’ is imple-
mented.

Returns actsnclass.Canonical – Updated canonical object with the attribute ‘canonical_sample’.

Return type obj

24 Chapter 1. Active Learning for Supernova Photometric Classification

actsnclass

actsnclass.plot_snpcc_train_canonical

actsnclass.plot_snpcc_train_canonical(sample: actsnclass.build_snpcc_canonical.Canonical,
output_plot_file=False)

Plot comparison between training and canonical samples.

Parameters

• sample (actsnclass.Canonical) – Canonical object holding infor for canonical sample

• output_plot_file (str (optional)) – Complete path to output plot. If not provided, plot is
displayed on screen only.

Build time domain data base

SNPCCPhotometry() Handles photometric information for entire SNPCC
data.

SNPCCPhotometry.
get_lim_mjds(raw_data_dir)

Get minimum and maximum MJD for complete sample.

SNPCCPhotometry.create_daily_file(. . . [,
header])

Create one file for a given day of the survey.

SNPCCPhotometry.build_one_epoch(. . . [,
. . .])

Fit bazin for all objects with enough points in a given
day.

actsnclass.SNPCCPhotometry

class actsnclass.SNPCCPhotometry
Handles photometric information for entire SNPCC data.

This class only works for Bazin feature extraction method.

Variables

• bazin_header (str) – Reader to be added to features files for each day.

• max_epoch (float) – Maximum MJD for the entire data set.

• min_epoch (float) – Minimum MJD for the entire data set.

• rmag_lim (float) – Maximum r-band magnitude allowing a query.

get_lim_mjds(raw_data_dir)
Get minimum and maximum MJD for complete sample.

create_daily_file(raw_data_dir: str, day: int, output_dir: str, header: str)
Create one file for a given day of the survey. Only populates the file with header. It will erase existing
files!

build_one_epoch(raw_data_dir: str, day_of_survey: int, time_domain_dir: str, feature_method:
str, dataset: str)

Selects objects with observed points until given MJD, performs feature extraction and evaluate if query is
possible. Save results to file.

__init__()
Initialize self. See help(type(self)) for accurate signature.

1.3. Table of Contents 25

actsnclass

Methods

__init__() Initialize self.
build_one_epoch(raw_data_dir,
day_of_survey, . . .)

Fit bazin for all objects with enough points in a given
day.

create_daily_file(output_dir, day[, header]) Create one file for a given day of the survey.
get_lim_mjds(raw_data_dir) Get minimum and maximum MJD for complete sam-

ple.

actsnclass.SNPCCPhotometry.get_lim_mjds

SNPCCPhotometry.get_lim_mjds(raw_data_dir)
Get minimum and maximum MJD for complete sample.

This function is not necessary if you are working with SNPCC data. The values are hard coded in the class.

Parameters raw_data_dir (str) – Complete path to raw data directory.

Returns limits – List of extreme MJDs for entire sample: [min_MJD, max_MJD].

Return type list

actsnclass.SNPCCPhotometry.create_daily_file

SNPCCPhotometry.create_daily_file(output_dir: str, day: int, header=’Bazin’)
Create one file for a given day of the survey.

The file contains only header for the features file.

Parameters

• output_dir (str) – Complete path to raw data directory.

• day (int) – Day passed since the beginning of the survey.

• header (str (optional)) – List of elements to be added to the header. Separate by 1 space.
Default option uses header for Bazin features file.

actsnclass.SNPCCPhotometry.build_one_epoch

SNPCCPhotometry.build_one_epoch(raw_data_dir: str, day_of_survey: int, time_domain_dir: str,
feature_method=’Bazin’, dataset=’SNPCC’)

Fit bazin for all objects with enough points in a given day.

Generate 1 file containing best-fit Bazin parameters for a given day of the survey.

Parameters

• raw_data_dir (str) – Complete path to raw data directory

• day_of_survey (int) – Day since the beginning of survey.

• time_domain_dir (str) – Output directory to store time domain files.

• feature_method (str (optional)) – Feature extraction method. Only possibility is ‘Bazin’.

• dataset (str (optional)) – Name of the data set. Only possibility is ‘SNPCC’.

26 Chapter 1. Active Learning for Supernova Photometric Classification

actsnclass

DataBase

Object upon which the learning process is performed

DataBase() DataBase object, upon which the active learning loop is
performed.

DataBase.load_bazin_features(path_to_bazin_file)Load Bazin features from file.
DataBase.load_features(path_to_file[, . . .]) Load features according to the chosen feature extraction

method.
DataBase.build_samples(initial_training[, . . .]) Separate train and test samples.
DataBase.classify([method, screen, n_est, . . .]) Apply a machine learning classifier.
DataBase.evaluate_classification([. . .]) Evaluate results from classification.
DataBase.make_query([strategy, batch, seed,
. . .])

Identify new object to be added to the training sample.

DataBase.update_samples(query_indx, loop[,
. . .])

Add the queried obj(s) to training and remove them
from test.

DataBase.save_metrics(loop, . . . [, batch]) Save current metrics to file.
DataBase.save_queried_sample(. . . [, . . .]) Save queried sample to file.

actsnclass.DataBase

class actsnclass.DataBase
DataBase object, upon which the active learning loop is performed.

Variables

• classprob (np.array()) – Classification probability for all objects, [pIa, pnon-Ia].

• data (pd.DataFrame) – Complete information read from features files.

• features (pd.DataFrame()) – Feature matrix to be used in classification (no meta-
data).

• features_names (list) – Header for attribute features.

• metadata (pd.DataFrame) – Features matrix which will not be used in classification.

• metadata_names (list) – Header for metadata.

• metrics_list_names (list) – Values for metric elements.

• predicted_class (np.array()) – Predicted classes - results from ML classifier.

• queried_sample (np.array()) – Complete information of queried objects.

• queryable_ids (np.array()) – Flag for objects available to be queried.

• test_features (pd.DataFrame) – Features matrix for the test sample.

• test_metadata (pd.DataFrame()) – Metadata for the test sample

• test_labels (np.array()) – True classification for the test sample.

• train_features (pd.DataFrame()) – Features matrix for the train sample.

• train_metadata (pd.DataFrame()) – Metadata for the training sample.

• train_labels (np.array()) – Classes for the training sample.

load_bazin_features(path_to_bazin_file: str)
Load Bazin features from file

1.3. Table of Contents 27

actsnclass

load_features(path_to_file: str, method: str)
Load features according to the chosen feature extraction method.

build_samples(initial_training: str or int, nclass: int)
Separate train and test samples.

classify(method: str)
Apply a machine learning classifier.

evaluate_classification(metric_label: str)
Evaluate results from classification.

make_query(strategy: str, batch: int)→ list
Identify new object to be added to the training sample.

update_samples(query_indx: list)
Add the queried obj(s) to training and remove them from test.

save_metrics(loop: int, output_metrics_file: str)
Save current metrics to file.

save_queried_sample(queried_sample_file: str, loop: int, full_sample: str)
Save queried sample to file.

Examples

>>> from actsnclass import DataBase

Define the necessary paths

>>> path_to_bazin_file = 'results/Bazin.dat'
>>> metrics_file = 'results/metrics.dat'
>>> query_file = 'results/query_file.dat'

Initiate the DataBase object and load the data. >>> data = DataBase() >>>
data.load_features(path_to_bazin_file, method=’Bazin’)

Separate training and test samples and classify

>>> data.build_samples(initial_training='original', nclass=2)
>>> data.classify(method='RandomForest')
>>> print(data.classprob) # check predicted probabilities
[[0.461 0.539]
[0.346print(data.metrics_list_names) # check metric header
['acc', 'eff', 'pur', 'fom']

>>> print(data.metrics_list_values) # check metric values
[0.5975434599574068, 0.9024767801857585,
0.34684684684684686, 0.13572404702012383] 0.654]
...
[0.398 0.602]
[0.396 0.604]]

Calculate classification metrics

>>> data.evaluate_classification(metric_label='snpcc')
>>>

Make query, choose object and update samples

28 Chapter 1. Active Learning for Supernova Photometric Classification

actsnclass

>>> indx = data.make_query(strategy='UncSampling', batch=1)
>>> data.update_samples(indx)

Save results to file

>>> data.save_metrics(loop=0, output_metrics_file=metrics_file)
>>> data.save_queried_sample(loop=0, queried_sample_file=query_file,
>>> full_sample=False)

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__() Initialize self.
build_samples(initial_training[, nclass, . . .]) Separate train and test samples.
classify([method, screen, n_est, seed, . . .]) Apply a machine learning classifier.
evaluate_classification([metric_label,
screen])

Evaluate results from classification.

load_bazin_features(path_to_bazin_file[,
screen])

Load Bazin features from file.

load_features(path_to_file[, method, screen]) Load features according to the chosen feature extrac-
tion method.

make_query([strategy, batch, seed, screen]) Identify new object to be added to the training sam-
ple.

save_metrics(loop, output_metrics_file, epoch) Save current metrics to file.
save_queried_sample(queried_sample_file,
loop)

Save queried sample to file.

update_samples(query_indx, loop[, epoch,
screen])

Add the queried obj(s) to training and remove them
from test.

actsnclass.DataBase.load_bazin_features

DataBase.load_bazin_features(path_to_bazin_file: str, screen=False)
Load Bazin features from file.

Populate properties: data, features, feature_list, header and header_list.

Parameters

• path_to_bazin_file (str) – Complete path to Bazin features file.

• screen (bool (optional)) – If True, print on screen number of light curves processed. Default
is False.

actsnclass.DataBase.load_features

DataBase.load_features(path_to_file: str, method=’Bazin’, screen=False)
Load features according to the chosen feature extraction method.

Populates properties: data, features, feature_list, header and header_list.

Parameters

1.3. Table of Contents 29

actsnclass

• path_to_file (str) – Complete path to features file.

• method (str (optional)) – Feature extraction method. The current implementation only ac-
cepts method==’Bazin’

• screen (bool (optional)) – If True, print on screen number of light curves processed. Default
is False.

actsnclass.DataBase.build_samples

DataBase.build_samples(initial_training: str, nclass=2, screen=False, queryable=False)
Separate train and test samples.

Populate properties: train_features, train_header, test_features, test_header, queryable_ids (if flag available),
train_labels and test_labels.

Parameters

• initial_training (str or int) – Choice of initial training sample. If ‘original’: begin from the
train sample flagged in the file If int: choose the required number of samples at random,
ensuring that at least half are SN Ia.

• nclass (int (optional)) – Number of classes to consider in the classification Currently only
nclass == 2 is implemented.

• screen (bool (optional)) – If True display the dimensions of training and test samples.

• queryable (bool (optional)) – If True build also queryable sample for time domain analysis.
Default is False.

actsnclass.DataBase.classify

DataBase.classify(method=’RandomForest’, screen=False, n_est=1000, seed=42, max_depth=None,
n_jobs=1)

Apply a machine learning classifier.

Populate properties: predicted_class and class_prob

Parameters

• method (str (optional)) – Chosen classifier. The current implementation on accepts Ran-
domForest.

• n_est (int (optional)) – Number of trees. Default is 1000.

• screen (bool (optional)) – If True, print debug comments on screen. Default is False.

• seed (int (optional)) – Random seed. Default is 42.

• max_depth (None or int (optional)) – The maximum depth of the tree. Default is None.

• n_jobs (int (optional)) – Number of cores used to train the model. Default is 1.

actsnclass.DataBase.evaluate_classification

DataBase.evaluate_classification(metric_label=’snpcc’, screen=False)
Evaluate results from classification.

Populate properties: metric_list_names and metrics_list_values.

30 Chapter 1. Active Learning for Supernova Photometric Classification

actsnclass

Parameters metric_label (str) – Choice of metric. Currenlty only snpcc is accepted.

actsnclass.DataBase.make_query

DataBase.make_query(strategy=’UncSampling’, batch=1, seed=42, screen=False)→ list
Identify new object to be added to the training sample.

Parameters

• seed (int (optional)) – Random seed. Default is 42.

• strategy (str (optional)) – Strategy used to choose the most informative object. Current
implementation accepts ‘UncSampling’ and ‘RandomSampling’. Default is UncSampling.

• batch (int (optional)) – Number of objects to be chosen in each batch query. Default is 1.

• screen (bool (optional)) – If true, display on screen information about the displacement in
order and classificaion probability due to constraints on queryable sample.

Returns query_indx – List of indexes identifying the objects to be queried in decreasing order of
importance. If strategy==’RandomSampling’ the order is irrelevant.

Return type list

actsnclass.DataBase.update_samples

DataBase.update_samples(query_indx: list, loop: int, epoch=0, screen=False)
Add the queried obj(s) to training and remove them from test.

Update properties: train_headers, train_features, train_labels, test_labels, test_headers and test_features.

Parameters

• query_indx (list) – List of indexes identifying objects to be moved.

• loop (int) – Store number of loop when this query was made.

• epoch (int (optional)) – Initial epoch since survey started. Default is 0.

• screen (bool (optional)) – Print debug auxiliary information on screen. Default is False.

actsnclass.DataBase.save_metrics

DataBase.save_metrics(loop: int, output_metrics_file: str, epoch: int, batch=1)
Save current metrics to file.

If loop == 0 the ‘output_metrics_file’ will be created or overwritten. Otherwise results will be added to an
existing ‘output_metrics file’.

Parameters

• loop (int) – Number of learning loops finished at this stage.

• output_metrics_file (str) – Full path to file to store metrics results.

• batch (int) – Number of queries in each loop.

• epoch (int) – Days since the beginning of the survey.

1.3. Table of Contents 31

actsnclass

actsnclass.DataBase.save_queried_sample

DataBase.save_queried_sample(queried_sample_file: str, loop: int, full_sample=False, batch=1)
Save queried sample to file.

Parameters

• queried_sample_file (str) – Complete path to output file.

• loop (int) – Number of learning loops finished at this stage.

• full_sample (bool (optional)) – If true, write down a complete queried sample stored in
property ‘queried_sample’. Otherwise append 1 line per loop to ‘queried_sample_file’. De-
fault is False.

Classifiers

random_forest(train_features, train_labels, . . .) Random Forest classifier.

actsnclass.random_forest

actsnclass.random_forest(train_features: numpy.array, train_labels: numpy.array, test_features:
numpy.array, nest=1000, seed=42, max_depth=None, n_jobs=1)

Random Forest classifier.

Parameters

• train_features (np.array) – Training sample features.

• train_labels (np.array) – Training sample classes.

• test_features (np.array) – Test sample features.

• nest (int (optional)) – Number of estimators (trees) in the forest. Default is 1000.

• seed (float (optional)) – Seed for random number generator. Default is 42.

• max_depth (None or int (optional)) – The maximum depth of the tree. Default is None.

• n_jobs (int (optional)) – Number of cores used to train the model. Default is 1.

Returns

• predictions (np.array) – Predicted classes.

• prob (np.array) – Classification probability for all objects, [pnon-Ia, pIa].

Query strategies

random_sampling(test_ids, queryable_ids[, . . .]) Randomly choose an object from the test sample.
uncertainty_sampling(class_prob, test_ids, . . .) Search for the sample with highest uncertainty in pre-

dicted class.

32 Chapter 1. Active Learning for Supernova Photometric Classification

actsnclass

actsnclass.random_sampling

actsnclass.random_sampling(test_ids: numpy.array, queryable_ids: numpy.array, batch=1,
seed=42, screen=False)→ list

Randomly choose an object from the test sample.

Parameters

• test_ids (np.array) – Set of ids for objects in the test sample.

• queryable_ids (np.array) – Set of ids for objects available for querying.

• batch (int (optional)) – Number of objects to be chosen in each batch query. Default is 1.

• screen (bool (optional)) – If True display on screen the ids of queried objects. Default is
False.

• seed (int (optional)) – Seed for random number generator. Default is 42.

Returns query_indx – List of indexes identifying the objects from the test sample to be queried.

Return type list

actsnclass.uncertainty_sampling

actsnclass.uncertainty_sampling(class_prob: numpy.array, test_ids: numpy.array,
queryable_ids: numpy.array, batch=1, screen=False) →
list

Search for the sample with highest uncertainty in predicted class.

Parameters

• class_prob (np.array) – Classification probability. One value per class per object.

• test_ids (np.array) – Set of ids for objects in the test sample.

• queryable_ids (np.array) – Set of ids for objects available for querying.

• batch (int (optional)) – Number of objects to be chosen in each batch query. Default is 1.

• dump (bool (optional)) – If True display on screen the shift in index and the difference in
estimated probabilities of being Ia caused by constraints on the sample available for query-
ing.

Returns query_indx – List of indexes identifying the objects from the test sample to be queried in
decreasing order of importance.

Return type list

Metrics

Individual metrics

accuracy(label_pred, label_true) Calculate accuracy.
efficiency(label_pred, label_true[, ia_flag]) Calculate efficiency.
purity(label_pred, label_true[, ia_flag]) Calculate purity.
fom(label_pred, label_true[, ia_flag, penalty]) Calculate figure of merit.

1.3. Table of Contents 33

actsnclass

actsnclass.accuracy

actsnclass.accuracy(label_pred: list, label_true: list)
Calculate accuracy.

Parameters

• label_pred (list) – predicted labels

• label_true (list) – true labels

Returns Accuracy – Global fraction of correct classifications.

Return type float

actsnclass.efficiency

actsnclass.efficiency(label_pred: list, label_true: list, ia_flag=1)
Calculate efficiency.

Parameters

• label_pred (list) – Predicted labels

• label_true (list) – True labels

• ia_flag (int (optional)) – Flag used to identify Ia objects. Default is 1.

Returns efficiency – Fraction of correctly classified SN Ia.

Return type float

actsnclass.purity

actsnclass.purity(label_pred: list, label_true: list, ia_flag=1)
Calculate purity.

Parameters

• label_pred (list) – Predicted labels

• label_true (list) – True labels

• ia_flag (int (optional)) – Flag used to identify Ia objects. Default is 1.

Returns Purity – Fraction of true SN Ia in the final classified Ia sample.

Return type float

actsnclass.fom

actsnclass.fom(label_pred: list, label_true: list, ia_flag=1, penalty=3.0)
Calculate figure of merit.

Parameters

• label_pred (list) – Predicted labels

• label_true (list) – True labels

• ia_flag (bool (optional)) – Flag used to identify Ia objects. Default is 1.

34 Chapter 1. Active Learning for Supernova Photometric Classification

actsnclass

• penalty (float) – Weight given for non-Ias wrongly classified.

Returns figure of merit – Efficiency x pseudo-purity (purity with a penalty for false positives)

Return type float

Metrics agregated by category or use

get_snpcc_metric(label_pred, label_true[, . . .]) Calculate the metric parameters used in the SNPCC.

actsnclass.get_snpcc_metric

actsnclass.get_snpcc_metric(label_pred: list, label_true: list, ia_flag=1, wpenalty=3)
Calculate the metric parameters used in the SNPCC.

Parameters

• label_pred (list) – Predicted labels

• label_true (list) – True labels

• ia_flag (bool (optional)) – Flag used to identify Ia objects. Default is 1.

• wpenalty (float) – Weight given for non-Ias wrongly classified.

Returns

• metric_names (list) – Name of elements in metrics: [accuracy, eff, purity, fom]

• metric_values (list) – list of calculated metrics values for each element

Active Learning loop

Full light curve

learn_loop(nloops, strategy, . . . [, . . .]) Perform the active learning loop.

actsnclass.learn_loop

actsnclass.learn_loop(nloops: int, strategy: str, path_to_features: str, output_metrics_file: str, out-
put_queried_file: str, features_method=’Bazin’, classifier=’RandomForest’,
training=’original’, batch=1, screen=True)

Perform the active learning loop. All results are saved to file.

Parameters

• nloops (int) – Number of active learning loops to run.

• strategy (str) – Query strategy. Options are ‘UncSampling’ and ‘RandomSampling’.

• path_to_features (str) – Complete path to input features file.

• output_metrics_file (str) – Full path to output file to store metric values of each loop.

• output_queried_file (str) – Full path to output file to store the queried sample.

• features_method (str (optional)) – Feature extraction method. Currently only ‘Bazin’ is
implemented.

1.3. Table of Contents 35

actsnclass

• classifier (str (optional)) – Machine Learning algorithm. Currently only ‘RandomForest’ is
implemented.

• training (str or int (optional)) – Choice of initial training sample. If ‘original’: begin from
the train sample flagged in the file If int: choose the required number of samples at random,
ensuring that at least half are SN Ia Default is ‘original’.

• batch (int (optional)) – Size of batch to be queried in each loop. Default is 1.

• screen (bool (optional)) – If True, print on screen number of light curves processed.

Time domain

get_original_training(path_to_features[,
. . .])

Read original full light curve training sample

time_domain_loop(days, output_metrics_file, . . .) Perform the active learning loop.

actsnclass.get_original_training

actsnclass.get_original_training(path_to_features, method=’Bazin’, screen=False)
Read original full light curve training sample

Parameters

• path_to_features (str) – Complete path to file holding full light curve features.

• method (str (optional)) – Feature extraction method. Only option implemented is “Bazin”.

• screen (bool (optional)) – If true, show on screen comments on the dimensions of some key
elements.

Returns Information about the original full light curve analys.

Return type snactclass.DataBase

actsnclass.time_domain_loop

actsnclass.time_domain_loop(days: list, output_metrics_file: str, output_queried_file: str,
path_to_features_dir: str, strategy: str, batch=1, canoni-
cal=False, classifier=’RandomForest’, features_method=’Bazin’,
path_to_canonical=”, path_to_full_lc_features=”, queryable=True,
screen=True, training=’original’)

Perform the active learning loop. All results are saved to file.

Parameters

• days (list) – List of 2 elements. First and last day of observations since the beginning of the
survey.

• output_metrics_file (str) – Full path to output file to store metrics for each loop.

• output_queried_file (str) – Full path to output file to store the queried sample.

• path_to_features_dir (str) – Complete path to directory holding features files for all days.

• strategy (str) – Query strategy. Options are ‘UncSampling’ and ‘RandomSampling’.

• batch (int (optional)) – Size of batch to be queried in each loop. Default is 1.

• canonical (bool (optional)) – If True, restrict the search to the canonical sample.

36 Chapter 1. Active Learning for Supernova Photometric Classification

actsnclass

• classifier (str (optional)) – Machine Learning algorithm. Currently only ‘RandomForest’ is
implemented.

• features_method (str (optional)) – Feature extraction method. Currently only ‘Bazin’ is
implemented.

• path_to_canonical (str (optional)) – Path to canonical sample features files. It is only used
if “strategy==canonical”.

• path_to_full_lc_features (str (optional)) – Path to full light curve features file. Only used
if training is a number.

• queryable (bool (optional)) – If True, allow queries only on objects flagged as queryable.
Default is True.

• screen (bool (optional)) – If True, print on screen number of light curves processed.

• training (str or int (optional)) – Choice of initial training sample. If ‘original’: begin from
the train sample flagged in the file If int: choose the required number of samples at random,
ensuring that at least half are SN Ia Default is ‘original’.

Plotting

Canvas() Canvas object, handles and plot information from mul-
tiple strategies.

Canvas.load_metrics(path_to_files, . . . [, . . .]) Load and identify set of metrics.
Canvas.set_plot_dimensions() Set directives for plot sizes.
Canvas.plot_metrics(output_plot_file, . . .) Generate plot for all metrics in files and strategies given

as input.

actsnclass.Canvas

class actsnclass.Canvas
Canvas object, handles and plot information from multiple strategies.

Variables

• axis_label_size (int) – Size of font in axis labels.

• canonical (pd.DataFrame) – Data from Canonical strategy.

• fig_size (tuple) – Figure dimensions.

• rand_sampling (pd.DataFrame) – Data from Random Sampling strategy.

• tick_label_size (int) – Size of tick labels in both axis.

• ncolumns (int) – Number of columns in panel grid.

• nlines (int) – Number of lines in panel grid.

• nmetrics (int) – Number of metric elements (panels in plot).

• metrics_names (list) – List of names for metrics to be plotted.

• unc_sampling (pd.DataFrame) – Data from Uncertainty Sampling strategy.

• colors (dict) – Colors corresponding to each strategy. They were chosen to follow
Mondrian’s color palette. Do not change and try to keep the same palette in adding new
elements.

1.3. Table of Contents 37

actsnclass

• labels (dict) – Labels to appear on plot for each strategy.

• markers (dict) – Plot markers for each strategy.

• strategies (dict) – Dictionary connecting each data frame to its standard nomencla-
ture (not the plot labels).

load_metrics(path_to_files: list, strategy_list: list)
Load metrics and identify set of metrics.

set_plot_dimensions()
Set directives for plot sizes based on number of metrics.

plot_metrics(output_plot_file: str, strategies_list: list)
Generate plot for all metrics in files and strategies given as input.

Examples

Define input variables

>>> path_to_files = ['results/metrics_canonical.dat',
>>> 'results/metrics_random.dat',
>>> 'results/metrics_unc.dat']
>>> strategies_list = ['Canonical', 'RandomSampling', 'UncSampling']
>>> output_plot = 'plots/metrics1_unc.png'

Initiate the Canvas object, read and plot the results for each metric and strategy.

>>> cv = Canvas()
>>> cv.load_metrics(path_to_files=path_to_files,
>>> strategies_list=strategies_list)
>>> cv.set_plot_dimensions()
>>> cv.plot_metrics(output_plot_file=output_plot,
>>> strategies_list=strategies_list)

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__() Initialize self.
load_metrics(path_to_files, strategies_list) Load and identify set of metrics.
plot_metrics(output_plot_file, strategies_list) Generate plot for all metrics in files and strategies

given as input.
set_plot_dimensions() Set directives for plot sizes.

actsnclass.Canvas.load_metrics

Canvas.load_metrics(path_to_files: list, strategies_list: list, metrics_name=’snpcc’)
Load and identify set of metrics.

Populates attributes: canonical, unc_sampling or rand_sampling, depending on choice of ‘sample’.

Parameters

• path_to_files (str) – List of paths to metrics files for different strategies.

38 Chapter 1. Active Learning for Supernova Photometric Classification

actsnclass

• strategies_list (list) – List of all strategies to be included in the same plot. Current possi-
bibilities are: [‘canonical’, ‘rand_sampling’, ‘unc_sampling’].

• metrics_name (str (optional)) – Identify the metrics to be read. Only option is ‘snpcc’.

actsnclass.Canvas.set_plot_dimensions

Canvas.set_plot_dimensions()
Set directives for plot sizes.

Populates attributes: nmetrics, ncolumns, and fig_size.

actsnclass.Canvas.plot_metrics

Canvas.plot_metrics(output_plot_file: str, strategies_list: list)
Generate plot for all metrics in files and strategies given as input.

Parameters

• output_plot_file (str) – Complete path to file to store plot.

• strategies_list (list) – List of all strategies to be included in the same plot. Current possi-
bibilities are: [‘canonical’, ‘rand_sampling’, ‘unc_sampling’].

Scripts

build_canonical(user_choices) Build canonical sample for SNPCC data set fitted with
Bazin features.

build_time_domain(user_choice) Generates features files for a list of days of the survey.
fit_dataset(user_choices) Fit the entire sample with the Bazin function.
make_metrics_plots(user_input) Generate metric plots.
run_loop(args) Command line interface to run the active learning loop.
run_time_domain(user_choice) Command line interface to the Time Domain Active

Learning scenario.

actsnclass.build_canonical

actsnclass.build_canonical(user_choices)
Build canonical sample for SNPCC data set fitted with Bazin features.

Parameters

• -c (bool) – If True, compute metadata on SNR and peak mag.

• -d (str (optional)) – Path to raw data directory. Needed only if “compute == False”.

• -f (str) – Path to features file.

• -i (str (optional)) – Path to read metadata on SNR and peak mag from file. It is only used if
“compute == False”.

• -m (str (optional)) – Path to output file where to store metadata on SNR and peak mag. Only
used if “save == True”.

• -o (str) – Path to store full canonical sample.

1.3. Table of Contents 39

actsnclass

• -p (str (optional)) – File to store comparison plot. If not provided plot is shown on screen.

• -s (bool) – If True, save to file metadata on SNR and peakmag.

Examples

Use directly from the command line:

>>> build_canonical.py -c <if True compute metadata>
>>> -d <path to raw data dir>
>>> -f <input features file> -m <output file for metadata>
>>> -o <output file for canonical sample> -p <comparison plot file>
>>> -s <if True save metadata to file>

actsnclass.build_time_domain

actsnclass.build_time_domain(user_choice)
Generates features files for a list of days of the survey.

Parameters

• -d (sequence) – Sequence of days since the begin of the survey to be processed.

• -p (str) – Complete path to raw data directory.

• -o (str) – Complete path to output time domain directory.

Examples

Use it directly from the command line.

>>> build_time_domain.py -d 20 21 22 23 -p <path to raw data dir> -o <path to
→˓output time domain dir>

actsnclass.fit_dataset

actsnclass.fit_dataset(user_choices)
Fit the entire sample with the Bazin function.

All results are saved to file.

Parameters

• -dd (str) – Path to directory containing raw data.

• -o (str) – Path to output feature file.

Examples

Run directly from the command line.

>>> fit_dataset.py -dd <path_to_data_dir> -o <output_file>

40 Chapter 1. Active Learning for Supernova Photometric Classification

actsnclass

actsnclass.make_metrics_plots

actsnclass.make_metrics_plots(user_input)
Generate metric plots.

Parameters

• -m (list) – List of paths to the metrics files. One path for each learning strategy we wish to
plot. This must follow the same order as give in -s.

• -o (str) – Path to output file where the plot will be stored.

• -s (list) – List of keywords describing the learning strategies to be plotted. Order must be
the same as provided in -m. Options are [‘canonical’, ‘rand_sampling’, ‘unc_sampling’]

Examples

Use it directly from the command line. For example, if you wish to make a metric plot for the random sampling
and uncertainty sampling together, do:

>>> make_metrics_plots.py -m <path to rand sampling metrics> <path to unc
→˓sampling metrics>
>>> -o <path to output plot file> -s RandomSampling UncSampling

actsnclass.run_loop

actsnclass.run_loop(args)
Command line interface to run the active learning loop.

Parameters

• -d (str) – Full path to output file to store diagnostics of each loop.

• -i (str) – Complete path to input features file.

• -n (int) – Number of active learning loops to run.

• -q (str) – Full path to output file to store the queried sample.

• -s (str) – Query strategy. Options are ‘UncSampling’ and ‘RandomSampling’.

• -b (int (optional)) – Size of batch to be queried in each loop. Default is 1.

• -c (str (optional)) – Machine Learning algorithm. Currently only ‘RandomForest’ is imple-
mented.

• -m (str (optional)) – Feature extraction method. Currently only ‘Bazin’ is implemented.

• -t (str or int (optional)) – Choice of initial training sample. If ‘original’: begin from the
train sample flagged in the file If int: choose the required number of samples at random,
ensuring that at least half are SN Ia. Default is ‘original’.

Examples

Run directly from the command line:

1.3. Table of Contents 41

actsnclass

>>> run_loop.py -i <input features file> -b <batch size> -n <number of loops>
>>> -d <output diagnostic file> -q <output queried sample file>
>>> -s <learning strategy> -t <choice of initial training>

actsnclass.run_time_domain

actsnclass.run_time_domain(user_choice)
Command line interface to the Time Domain Active Learning scenario.

Parameters

• -d (sequence) – List of 2 elements. First and last day of observations since the beginning of
the survey.

• -m (str) – Full path to output file to store metrics of each loop.

• -q (str) – Full path to output file to store the queried sample.

• -f (str) – Complete path to directory holding features files for all days.

• -s (str) – Query strategy. Options are ‘UncSampling’ and ‘RandomSampling’.

• -b (int (optional)) – Size of batch to be queried in each loop. Default is 1.

• -c (str (optional)) – Machine Learning algorithm. Currently only ‘RandomForest’ is imple-
mented.

• -fm (str (optional)) – Feature extraction method. Currently only ‘Bazin’ is implemented.

• -sc (bool (optional)) – If True, display comment with size of samples on screen.

• -t (str or int) – Choice of initial training sample. If ‘original’: begin from the train sample
flagged in the file If int: choose the required number of samples at random, ensuring that at
least half are SN Ia Default is ‘original’.

Returns

• metric file (file) – File with metrics calculated in each iteration.

• queried file (file) – All objects queried during the search, in sequence.

Examples

Use directly from the command line.

>>> run_time_domain.py -d <first day of survey> <last day of survey>
>>> -m <output metrics file> -q <output queried file> -f <features
→˓directory>
>>> -s <learning strategy> -fm <path to full light curve features >

Be aware to check the default options as well!

1.4 Indices and tables

• genindex

• modindex

42 Chapter 1. Active Learning for Supernova Photometric Classification

actsnclass

• search

1.4. Indices and tables 43

actsnclass

44 Chapter 1. Active Learning for Supernova Photometric Classification

Index

Symbols
__init__() (actsnclass.Canonical method), 23
__init__() (actsnclass.Canvas method), 38
__init__() (actsnclass.DataBase method), 29
__init__() (actsnclass.LightCurve method), 19
__init__() (actsnclass.SNPCCPhotometry method),

25

A
accuracy() (in module actsnclass), 34

B
bazin() (in module actsnclass.bazin), 21
build_canonical() (in module actsnclass), 39
build_one_epoch() (actsnclass.SNPCCPhotometry

method), 25, 26
build_samples() (actsnclass.DataBase method),

28, 30
build_snpcc_canonical() (in module act-

snclass), 24
build_time_domain() (in module actsnclass), 40

C
Canonical (class in actsnclass), 22
Canvas (class in actsnclass), 37
check_queryable() (actsnclass.LightCurve

method), 19
classify() (actsnclass.DataBase method), 28, 30
create_daily_file() (act-

snclass.SNPCCPhotometry method), 25,
26

D
DataBase (class in actsnclass), 27

E
efficiency() (in module actsnclass), 34
errfunc() (in module actsnclass.bazin), 21

evaluate_classification() (act-
snclass.DataBase method), 28, 30

F
find_neighbors() (actsnclass.Canonical method),

23, 24
fit_bazin() (actsnclass.LightCurve method), 19, 20
fit_bazin_all() (actsnclass.LightCurve method),

19, 20
fit_dataset() (in module actsnclass), 40
fit_scipy() (in module actsnclass.bazin), 22
fit_snpcc_bazin() (in module actsnclass), 21
fom() (in module actsnclass), 34

G
get_lim_mjds() (actsnclass.SNPCCPhotometry

method), 25, 26
get_original_training() (in module act-

snclass), 36
get_snpcc_metric() (in module actsnclass), 35

L
learn_loop() (in module actsnclass), 35
LightCurve (class in actsnclass), 18
load_bazin_features() (actsnclass.DataBase

method), 27, 29
load_features() (actsnclass.DataBase method),

27, 29
load_metrics() (actsnclass.Canvas method), 38
load_snpcc_lc() (actsnclass.LightCurve method),

19, 20

M
make_metrics_plots() (in module actsnclass), 41
make_query() (actsnclass.DataBase method), 28, 31

P
plot_bazin_fit() (actsnclass.LightCurve method),

19, 20

45

actsnclass

plot_metrics() (actsnclass.Canvas method), 38, 39
plot_snpcc_train_canonical() (in module act-

snclass), 25
purity() (in module actsnclass), 34

R
random_forest() (in module actsnclass), 32
random_sampling() (in module actsnclass), 33
run_loop() (in module actsnclass), 41
run_time_domain() (in module actsnclass), 42

S
save_metrics() (actsnclass.DataBase method), 28,

31
save_queried_sample() (actsnclass.DataBase

method), 28, 32
set_plot_dimensions() (actsnclass.Canvas

method), 38, 39
snpcc_get_canonical_info() (act-

snclass.Canonical method), 23
snpcc_identify_samples() (act-

snclass.Canonical method), 23, 24
SNPCCPhotometry (class in actsnclass), 25

T
time_domain_loop() (in module actsnclass), 36

U
uncertainty_sampling() (in module actsnclass),

33
update_samples() (actsnclass.DataBase method),

28, 31

46 Index

	Active Learning for Supernova Photometric Classification
	Getting started
	Analysis steps
	Table of Contents
	Indices and tables

	Index

